Article ID Journal Published Year Pages File Type
2824320 Plasmid 2010 7 Pages PDF
Abstract

Previous studies showed that when pPSX-vioABCDE was used to transform E. coli K12 DH5α the strain retained the plasmid even after 100 generations of unselected growth but produced a low level of the anti-tumour antibiotic violacein. Markedly higher levels of violacein synthesis were obtained from E. coli K12 DH5α pUC18-vioABCDE and Sphingomonas sp. JMP4092 pPSX-vioABCDE. Unfortunately, both strains were extremely unstable regardless of presence or absence of antibiotic selection to retain the plasmid. The current study was undertaken to determine if strains of E. coli K12 could be isolated which stably over produce violacein. When a range of E. coli K12 strains were transformed with pPSX-vioABCDE, most produced small amounts of violacein. However, a small number of related strains of E. coli K12 JM101, JM105 and JM109 not only over-produced violacein, but also maintained the high stability. In addition, E. coli K12 JM109 strongly expressed an alpha amylase gene (amyA) from Streptomyces lividans indicating that the S. lividans amyA promoter is highly active in E. coli K12 JM109. In another set of experiments, a violacein overproduction mutation (opv-1) of the plasmid pPSX-vioABCDE was isolated which enabled E. coli K12 DH5α to overproduce violacein while retaining high stability. The plasmid pPSX-vioABCDEopv-1 possesses a single base pair deletion in the promoter region of the violacein operon. By combining the over producing strain E. coli K12 JM109 and the over producing plasmid pPSX-vioABCDEopv-1, a stable hyper producing strain (E. coli K12 JM109 pPSX-vioABCDEopv-1) was constructed. Finally, two additional stable vectors, pPSX10 and pPSX20, were constructed to facilitate subcloning and functional analysis studies.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Genetics
Authors
, ,