Article ID Journal Published Year Pages File Type
2824516 Plasmid 2008 9 Pages PDF
Abstract

Condensin activity establishes and maintains mitotic chromosome condensation, however the mechanisms of condensin recognition of specific chromosomal sites remain unknown. rDNA is the chief condensin binding locus in Saccharomyces cerevisiae, and the level of nucleolar transcription is one of the key factors determining condensin loading to the nucleolar organizer. A new aspect of this transcriptional control is demonstrated in cells with a diffuse (episomal) nucleolar organizer, where active transcription excludes condensin from the transcribed regions of rDNA. Genome-wide ChIP-chip analysis showed that these cells acquire an altered and a more robust pattern of chromosomal condensin distribution, with increased enrichment of wild-type hotspots and with emergence of new sites, most notably in the subtelomeric regions. This genome-wide condensin relocalization induced by the increase in rDNA transcription and, possibly, nucleolar architecture uncovers a novel potential role of the nucleolus in the general chromosome organization.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Genetics
Authors
, ,