Article ID Journal Published Year Pages File Type
2828453 Journal of Structural Biology 2015 13 Pages PDF
Abstract

CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats)-mediated defense against invading nucleic acids is a process recently discovered in prokaryotes, which includes recognition and incorporation of invading genetic elements, transcription and processing of CRISPR-RNA (crRNA) and targeting the invaders through base pair recognition. In the type I–E CRISPR–Cas system, Cse2 is proposed to provide a platform to facilitate the targeting of the invading dsDNA by crRNA. Here we report the crystal structure of Meiothermus ruber Cse2 at 2.8 Å. M. ruber Cse2 adopts an α-helical bundle scaffold, harbors a positive surface for nucleic acid binding and a conserved dimer interface with strikingly low buried surface area. M. ruber Cse2 selectively binds to G-rich crRNA sequence, which is stripped off from the Cse2-crRNA and Cascade–crRNA complexes by ssDNA or dsDNA with complementary sequence. Stable M. ruber Cascade is readily formed by co-expression of M. ruber Cascade proteins together with G-rich crRNA in vitro. Docking of M. ruber Cse2 structures into the Escherichia coli Cascade Cryo-EM envelope reveals a curved elongated shallow groove for ssRNA binding, which adopts a similar dimer interface discovered by high-resolution crystal structure of Cse2 within E. Coli Cascade. Taken together, our data provides the structural insights into crRNA G-rich sequence recognition by M. ruber Cse2 and reveals the potential structural mechanism for M. ruber Cascade assembly and function.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Molecular Biology
Authors
, , ,