Article ID Journal Published Year Pages File Type
2828903 Journal of Structural Biology 2010 10 Pages PDF
Abstract
In humans, purine nucleoside phosphorylase (HsPNP) is responsible for degradation of deoxyguanosine, and genetic deficiency of this enzyme leads to profound T-cell mediated immunosuppression. HsPNP is a target for inhibitor development aiming at T-cell immune response modulation. Here we report the crystal structure of HsPNP in complex with 7-deazaguanine (HsPNP:7DG) at 2.75 Å. Molecular dynamics simulations were employed to assess the structural features of HsPNP in both free form and in complex with 7DG. Our results show that some regions, responsible for entrance and exit of substrate, present a conformational variability, which is dissected by dynamics simulation analysis. Enzymatic assays were also carried out and revealed that 7-deazaguanine presents a lower inhibitory activity against HsPNP (Ki = 200 μM). The present structure may be employed in both structure-based design of PNP inhibitors and in development of specific empirical scoring functions.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Molecular Biology
Authors
, , , , , , , ,