Article ID Journal Published Year Pages File Type
2831073 Molecular Immunology 2013 10 Pages PDF
Abstract

Both hypoxia and interleukin-17A (IL-17A) promote the migration and invasion of fibroblast-like synoviocytes (FLSs), which are critical for the pathogenesis of rheumatoid arthritis (RA). However, the biochemical pathways regulating IL-17A combined with hypoxia are not well defined. In this study, we found that co-stimulating RA-FLSs with IL-17A and hypoxia did not appear to promote the epithelial–mesenchymal transition (EMT), but did increase cell motility. We further showed that a proinvasive effect of IL-17A on FLSs under hypoxia might be through upregulation of matrix metalloproteinase 2 (MMP2) and MMP9. Moreover, IL-17A-induced expression of MMP2 and MMP9 under hypoxia was accompanied by increased activation of nuclear factor-κB (NF-κB)/hypoxia-inducible factor-1α (HIF-1α). Knockdown or inhibition of HIF-1α and NF-κB by small interfering RNA or specific small molecule inhibitors blocked IL-17A-mediated and hypoxia-mediated MMP2 and MMP9 expression, cell migration, and invasion. In addition, the inhibition of NF-κB led to a marked decrease in the expression of HIF-1α, which indicated that IL-17A activated HIF-1α via the NF-κB pathway in hypoxia. Taken together, our observations suggest a synergetic effect of IL-17A and hypoxia that might contribute to the migration and invasion of RA-FLSs by upregulating the expression of MMP2 and MMP9 by activation of the NF-κB/HIF-1α pathway.

► IL-17A promoted RA-FLSs migration and invasion under hypoxia. ► Combined IL-17A with hypoxia contributed to RA-FLSs migration and invasiveness through upregulation of MMP2 and MMP9. ► IL-17A heightened HIF-1α and NF-κB activities in RA-FLSs under hypoxia. ► IL-17A upregulated MMP2 and MMP9 expression through activating an NF-κB/HIF-1α pathway under hypoxia.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Molecular Biology
Authors
, , , , , , , ,