Article ID Journal Published Year Pages File Type
2831840 Molecular Immunology 2010 10 Pages PDF
Abstract

Dendritic cells (DCs) are often exposed to various oxygen tensions under physiological and pathological conditions. However, the effects of various oxygen tensions on DC functions remain unclear. In this study, we showed that hypoxia-differentiated DCs expressed lower levels of MHC-II molecule, co-stimulatory molecules (CD80, CD86) and proinflammatory cytokines (IL-1β, IL-6, and TNF-α), but higher levels of immunoregulatory cytokine transforming growth factor-beta (TGF-β) than normoxia-differentiated DCs. Unexpectedly, re-exposure of hypoxia-differentiated DCs to saturated oxygen (reoxygenation) completely restored their mature phenotype and function. Specifically, the reoxygenated DCs induced naïve CD4+ T cells to differentiate into Th1 and Th17 effector cells, but deceased the generation of CD4+CD25+Foxp3+ regulatory T cells (Tregs). The data indicate that hypoxic microenvironment suppresses the maturation and function of murine DCs. Reoxygenation of hypoxia-differentiated DCs however results in complete recovery of their mature phenotype and function, and has strong ability to drive immune response toward a proinflammatory direction, suggesting reoxygenated DCs may contribute to inflammation of ischemia-reperfusion injury.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Molecular Biology
Authors
, , , , , , , , , , , , ,