Article ID Journal Published Year Pages File Type
2832484 Molecular Immunology 2007 9 Pages PDF
Abstract

The antigen-binding fragment (Fab) has been considered a more functionally stable version of recombinant antibodies than single chain antibody fragments (scFvs), however this intuitive consideration has not been sufficiently proven in vivo. This communication shows that three out of four specific scFvs against a scorpion toxin, with different affinities and stabilities, become neutralizing in vivo when expressed as Fabs, despite the fact that they are not neutralizing in the scFv format. A scFv fragment previously obtained from a neutralizing mouse antibody (BCF2) was used to produce three derived scFvs by directed evolution. Only one of them was neutralizing, however when expressed as Fab, all of them became neutralizing fragments in vivo. The initial scFvBCF2 (earlier used for directed evolution) was not neutralizing in the scFv format. After expressing it as Fab did not become a neutralizing fragment, but did reduce the intoxication symptoms of experimental mice. The stability of the four Fabs derived from their respective scFvs was improved when tested in the presence of guanidinium chloride. The in vitro stability of the Fab format has been shown earlier, but the physiological consequences of this stability are shown in this communication. The present results indicate that improved functional stability conferred by the Fab format can replace additional maturation steps, when the affinity and stability are close to the minimum necessary to be neutralizing.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Molecular Biology
Authors
, , , , , ,