Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2833466 | Molecular Immunology | 2007 | 10 Pages |
Abstract
We investigated analogues of GP2 (IISAVVGIL), an HLA-A*0201-restricted T-cell epitope derived from residues 654-662 in the tumor-associated antigen (TAA) Her-2/neu. One limiting factor of GP2 is its poor affinity for HLA-A*0201. Conformational analysis revealed the P5-P7 region in GP2 appears to be linked to the stability of P9 side chain interaction with the MHC molecule. To identify variants of GP2 with enhanced presentation to HLA-A*0201, we tested V6S, V6T, V6Q, G7P, G7F, T6F7, and Q6F7 for their capacity to stabilize cell surface HLA-A*0201 molecules. Of the mono-substituted variants, V6Q and G7F exhibited superior stabilization as compared to GP2. Molecular dynamics simulations suggest the improved binding can be attributed to concerted motions in the central and C-terminal regions of the peptide. These data support the notion that amino acids in HLA-A*0201 epitopes may be inter-dependent. Priming HLA-A*0201 transgenic mice with G7F-loaded syngeneic dendritic cells stimulated mouse T cells to produce a higher level of INFγ than mice immunized with GP2.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Molecular Biology
Authors
Matthew A. Joseph, Megan L. Mitchell, Jeffrey D. Evanseck, Jeffrey R. Kovacs, Liang Jia, Hongmei Shen, Wilson S. Meng,