Article ID Journal Published Year Pages File Type
2838840 Trends in Molecular Medicine 2012 9 Pages PDF
Abstract

Despite significant advancement in developing therapies for multiple sclerosis (MS), drugs that cure this devastating disorder are an unmet need. Among the remedies showing efficacy in preclinical MS models, inhibitors of poly(ADP-ribose) polymerase (PARP)-1 have gained great momentum. Emerging evidence demonstrates that PARP-1 inhibitors epigenetically regulate gene expression and finely tune transcriptional activation in immune and neural cells. In this review, we present an appraisal of the effects of PARP-1 and its inhibitors on immune activation, with particular emphasis on the processes taking place during the autoimmune attack directed against the central nervous system. One explanation is that drugs inhibiting PARP-1 activity protect from neuroinflammation in MS models via immunomodulation and direct neuroprotection. PARP-1 inhibitors have already reached the clinical arena as cancer treatments, and observations made in treating these patients could help advance treatments for MS.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Molecular Medicine
Authors
, ,