Article ID Journal Published Year Pages File Type
2842314 Journal of Physiology-Paris 2010 14 Pages PDF
Abstract

Alterations of individual neurons dynamics and associated changes of the activity pattern, especially the transition from tonic firing (single-spikes) to bursts discharges (impulse groups), play an important role for neuronal information processing and synchronization in many physiological processes (sensory encoding, information binding, hormone release, sleep–wake cycles) as well as in disease (Parkinson, epilepsy). We have used Hodgkin–Huxley-type model neurons with subthreshold oscillations to examine the impact of noise on neuronal encoding and thereby have seen significant differences depending on noise implementation as well as on the neuron’s dynamic state. The importance of the individual neurons’ dynamics is further elucidated by simulation studies with electrotonically coupled model neurons which revealed mutual interdependencies between the alterations of the network’s coupling strength and neurons’ activity patterns with regard to synchronization. Remarkably, a pacemaker-like activity pattern which revealed to be much more noise sensitive than the bursting patterns also requires much higher coupling strengths for synchronization. This seemingly simple pattern is obviously governed by more complex dynamics than expected from a conventional pacemaker which may explain why neurons more easily synchronize in the bursting than in the tonic firing mode.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Physiology
Authors
, , , , ,