Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2845897 | Physiology & Behavior | 2008 | 5 Pages |
Abstract
Current models hold that peripheral and CNS GLP-1 signaling operate as distinct systems whereby CNS GLP-1 regulates food intake and circulating GLP-1 regulates glucose homeostasis. There is accumulating evidence that the arcuate nucleus, an area of the CNS that regulates energy homeostasis, responds to hormones and nutrients to regulate glucose homeostasis as well. Recent data suggest that GLP-1 may be another signal acting on the arcuate to regulate glucose homeostasis challenging the conventional model of GLP-1 physiology. This review discusses the peripheral and central GLP-1 systems and presents a model whereby these systems are integrated in regulation of glucose homeostasis.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Physiology
Authors
Darleen Sandoval,