Article ID Journal Published Year Pages File Type
2846551 Physiology & Behavior 2006 6 Pages PDF
Abstract

High-fat diets are often associated with greater caloric intake and weight gain. Since satiety during fat intake is induced by fat in the intestine we investigated the efficiency of a lipid compound that retards fat digestion to regulate fat intake. We found this compound to reduce high-fat food intake, body weight and blood lipids in Sprague–Dawley rats, without causing steatorrhea. The absence of steatorrhea is explained by an increased pancreatic lipase/colipase secretion, compensating the impaired lipolysis by the added compound. The animals also had an elevated CCK secretion. The satiety for fat may be the consequence of elevated CCK and procolipase/enterostatin levels. We conclude that compounds can be found that delay intestinal fat digestion and control high-fat food intake through the release of satiety signals, without causing steatorrhea. The absence of steatorrhea makes such compounds advantageous over lipase inhibitors in the treatment of obesity.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Physiology
Authors
, , , , ,