Article ID Journal Published Year Pages File Type
284734 Journal of Constructional Steel Research 2014 8 Pages PDF
Abstract

•Reports on fatigue characteristics of an original extended and anchored blind-bolt.•Failure mode of blind-bolt in fatigue is consistent with its monotonic failure mode.•Fatigue life of proposed fastener increases with an increase in concrete strength.•Blind-bolt fatigue strength adequately represented by standard bolt fatigue rules.

This paper investigates and reports on the fatigue behaviour of a novel blind-bolt system termed the Extended Hollo-bolt (EHB). The new blind-bolt is a modified version of the standard Lindapter Hollo-bolt, and its application relates to the construction of bolted, moment-resisting connections between open profile beams and concrete-filled tubular columns. The fatigue behaviour of the system is studied on the basis of constant amplitude loading tests, with a total of 56 experiments being reported. The specimens were subjected to tensile loading for various stress ranges, with the repeated load being selected relative to the design yield stress of the blind-bolt's internal shank. The influence of testing frequency and strength of concrete infill is also examined. An analysis of the results indicates that an increase in the concrete strength can increase the fatigue life of the EHB system. Within the tested range, the failure mode of the EHB under repeated loading was found to be due to internal bolt shank fracture, a mode which is consistent with its monotonic behaviour and also comparable with standard bolt–nut–washer system behaviour. The experimental results (S–N data) were further compared with the Eurocode 3 Part 1-9 guidelines. The fatigue design strength of the anchored EHB blind-bolt is found to be adequately represented by the current specification detail Category 50 that is provided for standard bolting systems.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,