Article ID Journal Published Year Pages File Type
2847657 Respiratory Physiology & Neurobiology 2010 5 Pages PDF
Abstract

Respiratory-modulated facial (VII) nerve discharge includes pre-inspiratory (Pre-I) and inspiratory (I) components. Tonic VII bursting is also present across the respiratory cycle. We tested the hypothesis that hypoxia-induced plasticity of VII motor activity is differentially expressed in Pre-I, I and tonic bursting. Phrenic and VII neurograms were recorded in urethane-anesthetized, vagotomized and ventilated adult rats. A 3 min isocapnic hypoxic challenge (PaO2 = 33 ± 2 mmHg) was used to evoke respiratory short-term potentiation (STP). Pre-I, I and tonic VII activity increased immediately at the initial stage of hypoxia (i.e. acute response) and then progressively increased as hypoxia was maintained. Following hypoxia, I VII activity remained elevated (i.e. post-hypoxia STP) but both Pre-I and tonic activity immediately returned to baseline values. We conclude that STP following hypoxia is preferentially expressed in I compared to Pre-I and tonic VII activity.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Physiology
Authors
, ,