Article ID Journal Published Year Pages File Type
285489 Journal of Constructional Steel Research 2010 12 Pages PDF
Abstract

Major technological advances in materials processing have led to the development of duplex stainless steels with exceptional mechanical properties. Duplexes have great potential for expanding future structural design possibilities, enabling a reduction in section sizes leading to lighter structures. The duplex grades offer combination of higher strength than austenitics as well as a great majority of carbon steels with similar or superior corrosion resistance. However, high nickel prices have more recently led to a demand for lean duplexes with low nickel content, such as grade EN 1.4162. Extensive work is needed to include the lean duplex grade EN 1.4162, into design standards such as EN 1993-1-4 and ENV 1994-1-1. Accordingly, finite element modelling for concrete-filled lean duplex slender stainless steel tubular stub columns of Grade EN 1.4162 is presented in this paper. The paper is predominantly concerned with two parameters: cross-section shape and concrete compressive strength, which have not yet been investigated. The non-linear displacement analysis of the columns was constructed herein based on the confined concrete model provided by Hu et al. (2003) [15]. The behaviour of the columns was investigated using a range of concrete cylinder strengths (25–100 MPa). The overall depth-to-width ratios (aspect ratio) varied from 1.0 to 1.8. The depth-to-plate thickness ratio of the tube sections varied from 60 to 90. The concrete-filled lean duplex slender stainless steel tubular columns were subjected to uniform axial compression over the concrete and stainless steel tube to force the entire section to undergo the same deformations by blocking action. The ABAQUS 6.6 program, as a finite element package, is used in the current work. The results showed that the design rules specified in the ASCE are highly conservative for square and rectangular concrete-filled lean duplex slender stainless steel stub columns while they are conservative in the case of European specifications. A new design strength is, therefore, proposed that is accurately found to represent the behaviour of concrete-filled lean duplex stainless steel tubular stub columns.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
,