Article ID Journal Published Year Pages File Type
285762 Journal of Constructional Steel Research 2009 13 Pages PDF
Abstract

The manufacturing process of cold-formed thin-walled steel members induces cold work which can be characterized by the co-existent residual stresses and equivalent plastic strains and has a significant effect on their structural behaviour and strength. The present paper and the companion paper are concerned with the prediction of residual stresses and co-existent equivalent plastic strains in stainless steel sections formed by the press-braking method. This manufacturing process consists of the following two distinct stages: (i) coiling and uncoiling of the sheets, and (ii) press-braking operations. This paper presents an analytical solution for the residual stresses and co-existent equivalent plastic strains that arise from the first stage. In the analytical solution, the coiling–uncoiling stage is modelled as an inelastic plane strain pure bending problem; the stainless steel sheets are assumed to obey Hill’s anisotropic yield criterion with isotropic hardening to account for the effects of material anisotropy and nonlinear stress–strain behaviour. The accuracy of the solution is demonstrated by comparing its predictions with those obtained from a finite element analysis. The present analytical solution and the corresponding analytical solution for press-braking operations presented in the companion paper form an integrated analytical model for predicting residual stresses and equivalent plastic strains in press-braked stainless steel sections.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,