Article ID Journal Published Year Pages File Type
2865701 The American Journal of Pathology 2015 9 Pages PDF
Abstract

Despite the described clear epigenetic effects of smoking, the effect of smoking on genome-wide gene expression in the blood is obscure. We therefore studied the smoking-induced changes in the gene-expression profile of the peripheral blood. RNA was extracted from the whole blood of 48 individuals with a detailed smoking history (24 never-smokers, 16 smokers, and 8 ex-smokers). Gene-expression profiles were evaluated with RNA sequencing, and results were analyzed separately in 24 men and 24 women. In the male smokers, 13 genes were statistically significantly (false-discovery rate <0.1) differentially expressed; in female smokers, 5 genes. Although most of the differentially expressed genes were different between the male and female smokers, the G-protein–coupled receptor 15 gene (GPR15) was differentially expressed in both male and female smokers compared with never-smokers. Analysis of GPR15 methylation identified significantly greater hypomethylation in smokers compared with that in never-smokers. GPR15 is the chemoattractant receptor that regulates T-cell migration and immunity. Up-regulation of GPR15 could explain to some extent the health hazards of smoking with regard to chronic inflammatory diseases.

Related Topics
Health Sciences Medicine and Dentistry Cardiology and Cardiovascular Medicine
Authors
, , , , , ,