Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2866367 | The American Journal of Pathology | 2006 | 11 Pages |
Benign peripheral nerve tumors called neurofibromas are a major source of morbidity for patients with neurofibromatosis type 1. Some neurofibroma Schwann cells aberrantly express the epidermal growth factor receptor (EGFR). In a mouse model in which the CNPase promoter drives expression of human EGFR in Schwann cells, nerves develop hypertrophy, mast cell accumulation, collagen deposition, disruption of axon-glial interactions, characteristics of neurofibroma and are hypoalgesic. Administration of the EGFR antagonist cetuximab (IMC-C225) for 2 weeks beginning at birth in CNPase-hEGFR mice normalized all pathologies at 3 months of age as evaluated by hotplate testing or histology and by electron microscopy. Mast cell chemoattractants brain-derived neurotrophic factor, monocyte chemoattractant protein-1, and transforming growth factor-β1, which may account for mast cell accumulation and fibrosis, were reduced by cetuximab. Later treatment was much less effective. A birth to 2-week pulse of cetuximab blocked hEGFR phosphorylation and Schwann cell proliferation in perinatal mutant nerve, so CNPase-hEGFR Schwann cell numbers correlate with the cetuximab effect. A >250-fold enlarged population of EGFR+/p75+ cells was detected in newborn Nf1+/− mouse nerves. These results suggest the existence of an EGFR+ cell enriched in the perinatal period capable of driving complex changes characteristic of neurofibroma formation.