Article ID Journal Published Year Pages File Type
286796 Journal of Rock Mechanics and Geotechnical Engineering 2013 11 Pages PDF
Abstract

Argillaceous rocks are being considered as potential host rocks for deep geological disposal. For the research work in DECOVALEX-2011, 5 participant research teams performed simulations of a laboratory drying test and a ventilation experiment for Mont Terri underground laboratory built in argillaceous rock formation. Our study starts with establishing a coupled thermo-hydro-mechano-chemical (THMC) processes model to simulate water transport in rock around the ventilated tunnel. Especially in this THMC formulation, a three-phase and two-constituent hydraulic model is introduced to simulate the processes which occur during tunnel ventilation, including desaturation/resaturation in the rock, phase change and air/rock interface, and to explore the Opalinus clay parameter set. It can be found that water content evolution is very sensitive to intrinsic permeability, relative permeability and capillary pressure in clay rock. Water loss from surrounding rock is sensitive to the change of permeability in clay which is induced by excavation damaged zone. Chemical solute transport in the rock near ventilation experiment tunnel is simulated based on the coupled THMC formulation. It can be estimated that chemical osmotic flow has little significance on water flow modeling. Comparisons between simulation results from 5 teams and experimental observations show good agreement. It increases the confidence in modeling and indicates that it is a good start for fully THMC understanding of the moisture transportation and mechanical behavior in argillaceous rock.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , ,