Article ID Journal Published Year Pages File Type
287460 Journal of Sound and Vibration 2014 14 Pages PDF
Abstract

This paper focuses on the coupled nonlinear vibration of vehicle–pavement system. The pavement is modeled as a Timoshenko beam resting on a six-parameter foundation. The vehicle is simplified as a spring–mass–damper oscillator. For the first time, the dynamic response of vehicle–pavement coupled system is studied by modeling the pavement as a Timoshenko beam resting on a nonlinear foundation. Consequently, the shear effects and the rotational inertia of the pavement are included in the modeling process. The pavement model is assumed to be a linear-plus-cubic Pasternak-type foundation. Furthermore, the convergent Galerkin truncation is used to obtain approximate solutions to the coupled vibratory response of the vehicle–pavement coupled system. The dynamic responses of the vehicle–pavement system with the asphalt pavement on soft soil foundation are investigated via the numerical examples. The numerical results show that the calculation for the coupled vibratory response needs high-order modes. Moreover, the coupling effects between the pavement and the vehicle are numerically examined by using the convergent modal truncation. The physical parameters of the vehicle–pavement system such as the shear modulus are compared for determining their influences on the coupled vibratory response.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , ,