Article ID Journal Published Year Pages File Type
287523 Journal of Sound and Vibration 2014 16 Pages PDF
Abstract

In this paper, a computational study using the moving element method (MEM) is carried out to investigate the dynamic response of a high-speed rail (HSR) traveling at non-uniform speeds. A new and exact formulation for calculating the generalized mass, damping and stiffness matrices of the moving element is proposed. Two wheel–rail contact models are examined. One is linear and the other nonlinear. A parametric study is carried out to understand the effects of various factors on the dynamic amplification factor (DAF) in contact force between the wheel and rail such as the amplitude of acceleration/deceleration of the train, the severity of railhead roughness and the wheel load. Resonance in the vibration response can possibly occur at various stages of the journey of the HSR when the speed of the train matches the resonance speed. As to be expected, the DAF in contact force peaks when resonance occurs. The effects of the severity of railhead roughness and the wheel load on the occurrence of the jumping wheel phenomenon, which occurs when there is a momentary loss of contact between the wheel and track, are investigated.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,