Article ID Journal Published Year Pages File Type
287811 Journal of Sound and Vibration 2014 22 Pages PDF
Abstract

The past decades have been marked by a significant increase in research interest in nonlinearities in micro-cracked and cracked solids. As a result, a number of different nonlinear acoustic methods have been developed for damage detection. A general consensus is that – under favourable conditions – nonlinear effects exhibited by cracks are stronger than crack-induced linear phenomena. However, there is still limited understanding of physical mechanisms related to various nonlinearities. This problem remains essential for implementation of nonlinear acoustics for damage-detection applications. This paper reviews modelling approaches used for nonlinear crack–wave interactions. Various models of classical and nonclassical crack-induced elastic, thermo-elastic and dissipative nonlinearities have been discussed.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , , ,