Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
287811 | Journal of Sound and Vibration | 2014 | 22 Pages |
The past decades have been marked by a significant increase in research interest in nonlinearities in micro-cracked and cracked solids. As a result, a number of different nonlinear acoustic methods have been developed for damage detection. A general consensus is that – under favourable conditions – nonlinear effects exhibited by cracks are stronger than crack-induced linear phenomena. However, there is still limited understanding of physical mechanisms related to various nonlinearities. This problem remains essential for implementation of nonlinear acoustics for damage-detection applications. This paper reviews modelling approaches used for nonlinear crack–wave interactions. Various models of classical and nonclassical crack-induced elastic, thermo-elastic and dissipative nonlinearities have been discussed.