Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
288369 | Journal of Sound and Vibration | 2013 | 14 Pages |
The problem of thermoacoustic instabilities in the combustor of modern air-breathing engines has become a topic of concern, which occurs as a result of unstable coupling between the heat release fluctuations and acoustic perturbations. A three-dimensional thermoacoustic model including the distributed non-uniform heat source and non-uniform flow is developed based on the domain decomposition spectral method. The importance of distributed heat source on combustion instabilities of longitudinal modes is analyzed with the help of a simplified geometrical configuration of combustor. The results show that the longitudinal distribution of heat source has a crucial effect on instabilities. In addition, the effect of circumferentially non-uniform heat source and non-uniform flow on longitudinal instabilities is also investigated. It can be found that the influence of circumferential non-uniformity can become significant on the lowest frequency instabilities, in particular, the oscillation frequency and growth rate are all evidently affected by temperature non-uniformity and time delay non-uniformity.