Article ID Journal Published Year Pages File Type
288393 Journal of Sound and Vibration 2013 10 Pages PDF
Abstract

This paper proposes an adaptive shunt damping circuit for improved damping performance. It consists of a switched inductance-resistance network (SSDI), which is connected in parallel to a negative capacitance. This circuit is in the following called ‘synchronized switching damping on negative capacitor and inductor’ (SSDNCI). It combines the adaptive nature of the SSDI technique and the improved performance of a negative capacitance. By the action of the switch device, the piezoelectric element is periodically held under both states of the nonlinear shunt and therefore adapts to the frequency of excitation.The analysis in this publication is performed based on the typical assumptions of a single degree-of-freedom oscillator. The stationary charge signal and energy dissipation are derived as functions of the ratio between the negative capacitance and piezoelectric capacitance. Calculation results show that the dissipated energy grows with the negative capacitance up to the stability boundary of the system. Measurements are conducted on a clamped beam test rig to validate the theoretical results. In the operative range of the negative capacitance which is used in this research, an increase in nearly 220% in energy dissipation compared to the standard SSDI technique is achieved.

► A novel synchronized switching damping with negative capacitance is proposed. ► The energy dissipation is derived as a function of capacitance ratio. ► In measurements, an increase in 220% in energy dissipation can be achieved.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,