Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
288468 | Journal of Sound and Vibration | 2011 | 11 Pages |
There have been many contributions concerned with non-smooth dynamics. The purpose of this study is focused on the global stochastic dynamics of a kind of vibro-impact oscillator under the multiple harmonic and bounded noisy excitations. The well-known cell-to-cell mapping method is firstly developed to investigate the incursive fractal boundaries between the attracting domains of different random attractors, and a specific Poincaré map is then set up to explore the noise-contaminated dynamical transitions in the system. Lastly, the leading Lyapunov exponents and the surrogate tests are used to identify the noise-contaminated dynamics. It is shown that several random attractors will coexist in the phase space of the randomly driven system by adjusting the parameters’ values, and fractal boundaries may also arise between the attracting domains of different random attractors. Under the joint action of the harmonic excitation and the weak bounded noise excitation, the noisy period-doubling process, similar to a deterministic one, can appear in the Poincaré’s global cross-section by increasing the strength of the bounded noisy excitation. Moreover, the noisy periodic, the noisy chaotic, and the random-dominant dynamics are also distinguished from the noise-contaminated signals.