Article ID Journal Published Year Pages File Type
288482 Journal of Sound and Vibration 2011 12 Pages PDF
Abstract

This paper presents a novel feature extraction scheme for roller bearing fault diagnosis utilizing generalized S transform and two-dimensional non-negative matrix factorization (2DNMF). The generalized S transform, which can make up the poor energy concentration of the standard S transform, is introduced to generate the time–frequency representation (TFR). Experiment results on simulated signal and vibration signals measured from rolling element bearings have revealed that the generalized S transform can obtain a more satisfactory TFR than other similar techniques. Furthermore, a new technique called two-dimensional non-negative matrix factorization (2DNMF), which can reduce the computation cost and preserve more structure information hiding in original 2D matrices compared to the NMF, is developed to extract more informative features from the time–frequency matrixes for accurate fault classification. Experimental results on bearing faults classification have demonstrated that the proposed feature extraction scheme has an advantage over other similar feature extraction approaches.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , , , ,