Article ID Journal Published Year Pages File Type
288492 Journal of Sound and Vibration 2012 15 Pages PDF
Abstract

In systems with rotational symmetry, bending modes occur in doubly-degenerate pairs with two independent vibration modes for each repeated natural frequency. In circular plates, the standing waves of two such degenerate bending modes can be superposed with a 1/4 period separation in time to yield a traveling wave response. This is the principle of a traveling wave ultrasonic motor (TWUM), in which a traveling bending wave in a stator drives the rotor through a friction contact. The stator contains teeth to increase the speed at the contact region, and these affect the rotational symmetry of the plate. When systems with rotational symmetry are modified either in their geometry, or by spatially varying their properties or boundary conditions, some mode-pairs split into singlet modes having distinct frequencies. In addition, coupling between some pairs of distinct unperturbed modes also causes quasi-degeneracies in the perturbed modes, which leads their frequency curves to approach and veer away in some regions of the parameter space. This paper discusses the effects of tooth geometry on the behavior of plate modes under free vibration. It investigates mode splitting and quasi-degeneracies and derives analytic expressions to predict these phenomena, using variational methods and a degenerate perturbation scheme for the solution to the plate’s discrete eigenvalue problem; these expressions are confirmed by solving the discrete eigenvalue problem of the plate with teeth.

► In circular plates with teeth, some degenerate mode pairs split. ► In addition, quasi-degeneracies can result, causing frequency loci to interact. ► Splitting and quasi-degeneracies affect the generation of traveling waves. ► We derive expressions to predict these phenomena.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,