Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
288504 | Journal of Sound and Vibration | 2012 | 15 Pages |
Abstract
This work reports on the first experimental study of the broadband targeted energy transfer properties of a two-degree-of-freedom (two-DOF) essentially nonlinear energy absorber. In particular, proper design of the absorber allows for an extended range of energy over which it serves to significantly enhance the damping observed in the structural system to which it is attached. Comparisons of computational and experimental results validate the proposed design as a means of drastically enhancing the damping properties of a structure by passive broadband targeted energy transfers to a strongly nonlinear, multidegree-of-freedom attachment.
Related Topics
Physical Sciences and Engineering
Engineering
Civil and Structural Engineering
Authors
Nicholas E. Wierschem, D. Dane Quinn, Sean A. Hubbard, Mohammad A. Al-Shudeifat, D. Michael McFarland, Jie Luo, Larry A. Fahnestock, Billie F. Spencer Jr., Alexander F. Vakakis, Lawrence A. Bergman,