Article ID Journal Published Year Pages File Type
288615 Journal of Sound and Vibration 2012 21 Pages PDF
Abstract

Energy Flow Analysis (EFA) has been developed to predict the vibration energy density of system structures in the high frequency range. This paper develops the energy flow model for the thin plate in contact with mean flow. The pressure generated by mean flow affects energy governing equation and power reflection–transmission coefficients between plates. The fluid pressure is evaluated by using velocity potential and Bernoulli's equation, and energy governing equations are derived by considering the flexural wavenumbers of a plate, which are different along the direction of flexural wave and mean flow. The derived energy governing equation is composed of two kinds of group velocities. To verify the developed energy flow model, various numerical analyses are performed for a simple plate and a coupled plate for several excitation frequencies. The EFA results are compared with the analytical solutions, and correlations between the EFA results and the analytical solutions are verified.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,