Article ID Journal Published Year Pages File Type
288722 Journal of Sound and Vibration 2010 15 Pages PDF
Abstract

At high frequencies it is often desirable to describe the behaviour of a structure in terms of subsystem energies. The most important method used for high frequency analysis is statistical energy analysis (SEA). Recently, the frequency range in which finite element analysis is applied is being extended to higher frequencies resulting in SEA-like analysis. Methods such as energy distribution modelling can be used to obtain the matrix of energy influence coefficients (EICs); the EIC matrix can be inverted to estimate SEA-like “apparent” coupling loss factors (ACLFs). The ACLFs so estimated depend on details of global modal properties, especially at low and moderate modal overlap. This has implications for design modifications, for example by adding damping treatment to one subsystem, since generally all the EICs change and hence so do all the ACLFs. In principle a full re-analysis is required; this is in contrast to classical SEA. This paper describes these problems and their causes and approximations to the SEA-like parameters of the modified system are proposed. Estimates of the response of the structure after modifications can be found without full re-analysis, leading to a computationally efficient method. The case studies show good agreement between the estimates based on the proposed approaches and the ones based on full re-analysis. The net outcome is that the ACLFs can be estimated after the modification has been made in a manner similar to conventional SEA.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,