Article ID Journal Published Year Pages File Type
288759 Journal of Sound and Vibration 2011 19 Pages PDF
Abstract

The vibration of elastic thin nanoplates traversed by a moving nanoparticle involving Coulomb friction is investigated using the nonlocal continuum theory of Eringen. The eigen function technique and the Laplace transform method are employed to solve the governing equations of the nanoplate. The explicit expressions of the in-plane and transverse displacements are obtained when the moving nanoparticle traverses the nanoplate on an arbitrary straight line. In a special case, the obtained results are also compared with those of other researchers and a reasonably good agreement is achieved. The effects of small-scale parameters and velocity of the moving nanoparticle on the dynamic response as well as the dynamic amplitude factors (DAFs) of the in-plane and transverse displacements are then explored in some detail. The results indicate that the magnitude of DAF of the transverse displacement of the nanoplate (i.e., DAFw) increases with the first small-scale effect parameter, irrespective of the values of the second small-scale effect parameter and the velocity of the moving nanoparticle. As the first small-scale effect parameter grows, the maximum values of DAFw as a function of the moving nanoparticle velocity increase and generally occur in the lower levels of the moving nanoparticle velocity.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
,