Article ID Journal Published Year Pages File Type
288915 Journal of Sound and Vibration 2012 17 Pages PDF
Abstract

To investigate the flutter characteristics of a folding wing with different configurations, a parameterized aeroelastic model is proposed. First, a parameterized structural model is established based on the substructure synthesis. Afterwards, the parameterized aerodynamic model is derived for each lifting surface using the so-called Doublet Lattice Method (DLM). The correctness of the resulting aeroelastic model is verified via NASTRAN. Finally, some aeroelastic simulations are performed using the proposed aeroelastic model. The results demonstrate that the flutter characteristics of the folding wing are very sensitive to the folding angle. With increasing folding angle, a transition between two unstable modes occurs. Such a transition results in a sudden change of flutter mode shapes and a jump of critical flutter frequency. Besides, there exists a region of folding angle, where the flutter behavior of the folding wing strongly depends on the structural damping.

► We develop a parameterized structural model of a folding wing. ► We develop a parameterized aerodynamic model of a folding wing. ► We find a jump phenomenon of critical flutter frequency. ► There exists a region of the folding angle in which the structural damping has strong effects on the flutter characteristics.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,