Article ID Journal Published Year Pages File Type
288945 Journal of Sound and Vibration 2011 10 Pages PDF
Abstract

In this paper a Human–Vehicle–Road (HVR) model, comprising a quarter-car and a biomechanical representation of the driver, is employed for the analysis. Differential equations are provided to describe the motions of various masses under the influence of a harmonic road excitation. These equations are, subsequently, solved to obtain a closed form mathematical expression for the steady-state vertical acceleration measurable at the vehicle–human interface. The solution makes it possible to find optimal parameters for the vehicle suspension system with respect to a specified ride comfort level. The quantitative definition given in the ISO 2631 standard for the ride comfort level is adopted in this paper for the optimization procedure. Numerical examples, based on actually measured road profiles, are presented to prove the validity of the proposed approach and its suitability for the problem at hand.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , ,