Article ID Journal Published Year Pages File Type
289074 Journal of Sound and Vibration 2010 19 Pages PDF
Abstract

This paper presents a systematic investigation of the performance of particle dampers (vertical and horizontal) attached to a primary system (single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF)) under different dynamic loads (free vibration, stationary random excitation as well as nonstationary random excitation, with single component or multi-component), and the optimum operating regions are all determined. The amount of dissipated energy due to impact and friction, and the concept of “Effective Momentum Exchange” are shown to be suitable “global” measures to interpret the physics involved in the behavior of particle dampers. Using the well-established discrete element method, the motion of vertical particle dampers can be analyzed and classified into three different regions, and the associated damping characteristics can be interpreted. The first mode of a MDOF primary system can be effectively controlled by a properly designed particle damper; however, the higher modes are more affected by other parameters. Consequently, extensive parametric studies are presented to evaluate the effects of various system parameters, such as: mass ratio, primary system damping, coefficient of restitution, container dimensions, excitation amplitude and components, input locations and damper locations.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,