Article ID Journal Published Year Pages File Type
289096 Journal of Sound and Vibration 2011 14 Pages PDF
Abstract

This paper presents a dynamic analysis of time-harmonic plane SH-waves propagating in periodically multilayered elastic composites with a strip-like crack. The total wave field in the multilayered elastic structure is described as a sum of incident wave field modeled by the transfer matrix method and the scattered wave field governed by an integral representation containing the crack-opening-displacement. The integral equation derived from the boundary conditions on the crack-faces is solved numerically by a Galerkin method. The paper focuses on resonant and non-resonant regimes of anti-plane wave motion in a stack of elastic layers weakened by a single strip-like crack and wave localization in the vicinity of the crack. The scattered extra displacement induced by the presence of the crack is investigated in detail for both situations of high and low contrast in material properties. Numerical results for the average crack-opening-displacement, the transmission coefficient, the stress intensity factor and the average energy flow are presented and discussed to reveal wave resonance and localization phenomena within the band-gaps and the pass-bands.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,