Article ID Journal Published Year Pages File Type
289180 Journal of Sound and Vibration 2011 12 Pages PDF
Abstract

This paper reports the design of a semi-active particle-based damping system in which a dry magnetic particle bed is used to dissipate the energy of a vibrating piston. The system is magnetized by a magnetic field generated by an electromagnetic coil. Hysteresis-free, ferromagnetic materials are selected for both the piston and particles. The damping efficiency increases as the magnetization of the piston and particles increases up to saturation. Semi-active control is achieved by varying the electric current supplied to the coil, which changes the magnetization and allows for real-time tunability of the damping rate. During the process of magnetization and demagnetization, the damping is reversible and temperature-independent over a wide temperature range. This system can be useful in aerospace, automobile and structural engineering applications, particularly in harsh environments.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , , , ,