Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
289294 | Journal of Sound and Vibration | 2010 | 6 Pages |
Prior computations have predicted the time-averaged acoustic radiation force on fluid spheres in water when illuminated by an acoustic high-order Bessel beam (HOBB) of quasi-standing waves. These computations are extended to the case of a rigid sphere in water which perfectly mimics a fluid sphere in air. Numerical results for the radiation force function of a HOBB quasi-standing wave tweezers are obtained for beams of zero, first and second order, and discussed with particular emphasis on the amplitude ratio describing the transition from progressive waves to quasi-standing waves behavior. This investigation may be helpful in the development of acoustic tweezers and methods for manipulating objects in reduced gravity environments and space related applications.