Article ID Journal Published Year Pages File Type
289672 Journal of Sound and Vibration 2010 15 Pages PDF
Abstract

An inertial, active device running on its internal feedback is proposed for controlling the self-excited vibration of a single degree-of-freedom Rayleigh oscillator. The control strategy utilizes the time-delayed feedback of the acceleration of the sprung mass of the device. The feedback law is recursive in nature and based on large amount of weighted information regarding the past history of the dynamics. The proposed device, when properly tuned, either completely quenches or reduces the amplitude of vibration. A comparison with a passive absorber reveals that the proposed active absorber can achieve better stability conditions. However like a passive absorber, the device has finite robustness, i.e., it can control only a certain level of instability inherent in the primary self-excited system.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,