Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
289782 | Journal of Sound and Vibration | 2010 | 18 Pages |
This article addresses the problem of parametric time-domain identification and dynamic analysis for time-varying (TV) mechanical structures under unobservable random excitation. The methods presented are based on time-dependent autoregressive moving average (TARMA) models, and are classified according to the mathematical structure imposed on the TV parameter evolution as unstructured parameter evolution, stochastic parameter evolution, and deterministic parameter evolution. The features and relative merits of each class are outlined. A representative method from each is then assessed through its application to the identification and dynamic analysis of a laboratory TV structure consisting of a beam with a mass moving on it. The results are mutually compared and contrasted to those obtained through “frozen-configuration” (multiple experiment) baseline identification.