Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2899402 | Cardiovascular Pathology | 2006 | 8 Pages |
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor of fibrinolysis. Elevated levels of PAI-1 were frequently detected in patients with coronary artery disease (CAD) or diabetes. Low-density lipoprotein (LDL) is a classical risk factor of CAD. Oxidation and glycation increase the atherogenecity of LDL. Previous studies demonstrated that oxidized LDL (oxLDL) or glycated LDL (gly-LDL) increased the release of PAI-1 from endothelial cells (ECs). The present study examined the effects of oxLDL and gly-LDL on the transcription, expression, secretion, and subcellular distribution of PAI-1 in cultured human ECs. Treatment with LDL significantly increased the promoter activity, mRNA level, and the release of PAI-1 from ECs by two- to threefold compared to controls. Oxidation or glycation significantly enhanced the effects of LDL on PAI-1 production in ECs compared to LDL (four- to fivefold vs. controls). No significant differences were detected between the effects of oxLDL and gly-LDL. Abundant PAI-1 antigens were detected in the perinuclear region of ECs and overlapped with giantin, a marker of Golgi apparatus. Treatment with brefeldin A disturbed the stack structure of Golgi apparatus and almost completely inhibited the release of PAI-1 from ECs induced by the lipoproteins and at basal conditions. The results suggest that oxidation and glycation enhanced the effects of LDL on the production of PAI-1 in ECs through increasing the transcription of PAI-1. Intact Golgi apparatus is required for PAI-1 generation from ECs induced by LDL or its modified forms.
Related Topics
Health Sciences
Medicine and Dentistry
Cardiology and Cardiovascular Medicine
Authors
Guoping M. Ma, Andrew J. Halayko, Gerald L. Stelmack, Fuqin Zhu, Ruozhi Zhao, Craig T. Hillier, Garry X. Shen,