Article ID Journal Published Year Pages File Type
289944 Journal of Sound and Vibration 2008 21 Pages PDF
Abstract

The classical method of separation of variables in conjunction with the translational addition theorem for cylindrical wave functions are employed to obtain an exact solution for two-dimensional interaction of a harmonic plane acoustic wave with an infinitely long (visco)elastic circular cylinder which is eccentrically coated by another (visco)elastic material and is submerged in an ideal unbounded acoustic medium. The novel features of Havriliak–Negami model for dynamic viscoelastic material behaviour are used to take the rheological properties of the coating (and/or core) material into consideration. The analytical results are illustrated with numerical examples in which a steel rod eccentrically coated with (an eccentric steel shell filled with) dissipative materials of distinct viscoelastic properties is insonified by plane sound waves at selected angles of incidence. The effects of incident wave frequency, angle of incidence, core eccentricity and dynamic viscoelastic material properties on the backscattered form function spectra are examined. Limiting cases are considered and fair agreements with available solutions are obtained.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,