Article ID Journal Published Year Pages File Type
289984 Journal of Sound and Vibration 2010 8 Pages PDF
Abstract

This paper initiates the theoretical analysis of microscale resonators containing internal flow, modelled here as microfabricated pipes conveying fluid, and investigates the effects of flow velocity on damping, stability, and frequency shift. The analysis is conducted within the context of classical continuum mechanics, and the effects of structural dissipation (including thermoelastic damping in hollow beams), boundary conditions, geometry, and flow velocity on vibrations are discussed. A scaling analysis suggests that slender elastomeric micropipes are susceptible to instability by divergence (buckling) and flutter at relatively low flow velocities of ∼10 m/s.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , ,