Article ID Journal Published Year Pages File Type
290297 Journal of Sound and Vibration 2008 12 Pages PDF
Abstract

A new critical criterion of period-doubling bifurcations is proposed for high dimensional maps. Without the dependence on eigenvalues as in the classical bifurcation criterion, this criterion is composed of a series of algebraic conditions under which period-doubling bifurcation occurs. The proposed criterion is applied to the analysis of period-doubling bifurcation in a two-degree-of-freedom inertial shaker model. It can be seen in this example that the proposed criterion is preferable to the classical bifurcation criterion in high dimensional maps.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,