Article ID Journal Published Year Pages File Type
290450 Journal of Sound and Vibration 2008 13 Pages PDF
Abstract

A stochastic optimal control strategy for partially observable nonlinear quasi-Hamiltonian systems is proposed. The optimal control force consists of two parts. The first part is determined by the conditions under which the stochastic optimal control problem of a partially observable nonlinear system is converted into that of a completely observable linear system. The second part is determined by solving the dynamical programming equation derived by applying the stochastic averaging method and stochastic dynamical programming principle to the completely observable linear control system. The response of the optimally controlled quasi-Hamiltonian system is predicted by solving the averaged Fokker–Planck–Kolmogorov equation associated with the optimally controlled completely observable linear system and solving the Riccati equation for the estimate errors of system states. An example is given to illustrate the procedure and effectiveness of the proposed control strategy.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,