Article ID Journal Published Year Pages File Type
290985 Journal of Sound and Vibration 2006 16 Pages PDF
Abstract

The application of neural network classifiers to a damage detection problem is discussed within a framework of an interval arithmetic-based information-gap technique. Using this approach the robustness of trained classifiers to uncertainty in their input data was assessed. Conventional network training using a regularised Maximum Likelihood approach is discussed and compared with interval propagation applied as a tool to evaluate the robustness of a particular network. Concepts of interval-based worst-case error and opportunity are introduced to facilitate the analysis. The interval-based approach is further developed into a network selection procedure capable of significant improvements (up to 22%) in the worst-case error performance over a conventional network trained on crisp (single-valued) data.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,