Article ID Journal Published Year Pages File Type
291392 Journal of Sound and Vibration 2006 13 Pages PDF
Abstract

Significant damping of structural vibration can be attained by coupling to the structure a low-density medium (such as a powder or foam) in which the speed of sound propagation is relatively low. We describe a set of experiments in which flexural vibration of aluminum beams over a broad frequency range is damped by introduction of a layer of lossy low-wave-speed foam. At frequencies high enough to set up standing waves through the thickness of the foam, loss factors as high as 0.05 can be obtained with a foam layer whose mass is 3.9% of that of the beam. We model the foam as a continuum in which waves of dilatation and distortion can propagate, obtain approximate solutions for the frequency response of the system by means of a modal expansion, and find that the predictions are in close agreement with the measured responses. Finally, we develop a simple approximation for the system loss factor based on the complex wavenumber associated with flexural vibration in an infinite beam.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,