Article ID Journal Published Year Pages File Type
291714 Journal of Sound and Vibration 2008 20 Pages PDF
Abstract

This paper presents a parameter-dependent controller design approach for vehicle active suspensions to deal with changes in vehicle inertial properties and existence of actuator time delays. By defining a parameter-dependent Lyapunov functional, matrix inequality conditions with reduced conservatism are obtained for the design of controllers. Feasible solutions can be obtained by solving a finite number of linear matrix inequalities (LMIs) embedded within a genetic algorithm (GA). Both state feedback and static output feedback controllers can be designed under a unified framework. Based on the measurement or estimation of the vehicle inertial parameters, a parameter-dependent controller could be implemented in practice. The presented approach is applied to a two-degree-of-freedom quarter-car suspension model. Numerical simulations on both bump and random road responses show that the designed parameter-dependent controllers can achieve good active suspension performance regardless of the variation on the sprung mass and the presence of actuator time delay.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,