Article ID Journal Published Year Pages File Type
2922559 Heart Rhythm 2012 7 Pages PDF
Abstract

BackgroundMen and women with type 1 long QT syndrome (LQT1) exhibit time-dependent differences in the risk for cardiac events.ObjectiveWe hypothesized that sex-specific risk for LQT1 is related to the location and function of the disease-causing mutation in the KCNQ1 gene.MethodsThe risk for life-threatening cardiac events (comprising aborted cardiac arrest [ACA] or sudden cardiac death [SCD]) from birth through age 40 years was assessed among 1051 individuals with LQT1 (450 men and 601 women) by the location and function of the LQT1-causing mutation (prespecified as mutations in the intracellular domains linking the membrane-spanning segments [ie, S2–S3 and S4–S5 cytoplasmic loops] involved in adrenergic channel regulation vs other mutations).ResultsMultivariate analysis showed that during childhood (age group: 0–13 years) men had >2-fold (P < .003) increased risk for ACA/SCD than did women, whereas after the onset of adolescence the risk for ACA/SCD was similar between men and women (hazard ratio = 0.89 [P = .64]). The presence of cytoplasmic-loop mutations was associated with a 2.7-fold (P < .001) increased risk for ACA/SCD among women, but it did not affect the risk among men (hazard ratio 1.37; P = .26). Time-dependent syncope was associated with a more pronounced risk-increase among men than among women (hazard ratio 4.73 [P < .001] and 2.43 [P = .02], respectively), whereas a prolonged corrected QT interval (≥500 ms) was associated with a higher risk among women than among men.ConclusionOur findings suggest that the combined assessment of clinical and mutation location/functional data can be used to identify sex-specific risk factors for life-threatening events for patients with LQT1.

Related Topics
Health Sciences Medicine and Dentistry Cardiology and Cardiovascular Medicine
Authors
, , , , , , , , , , , , , ,