Article ID Journal Published Year Pages File Type
292652 Journal of Wind Engineering and Industrial Aerodynamics 2007 16 Pages PDF
Abstract

As the span length of suspension bridges increases, the diameter of cables and thus the wind load acting on them, the nonlinear wind-structure interaction and the spatial non-uniformity of wind speed (including the vertical and horizontal variations) all increase consequently, which may have unnegligible influence on the aerostatic and aerodynamic behavior of long-span suspension bridges. In this paper, the models of aerostatic and aerodynamic forces are established, in which the nonlinear wind-structure interaction and the spatial non-uniformity of wind speed are both considered. By taking the Runyang Bridge over the Yangtze River as example, effects of the nonlinear wind-structure interaction, wind speed spatial non-uniformity, and the cable's wind load on the aerostatic and aerodynamic behavior of the bridge are investigated analytically. The results show that the aerostatic behavior is significantly influenced by these factors, but for the aerodynamic stability, it is greatly influenced by the nonlinear wind-structure interaction and the horizontal variation of wind speed, and the other factors have no influence on it.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
,