Article ID Journal Published Year Pages File Type
293947 Marine Structures 2009 22 Pages PDF
Abstract

An accurate determination of the global load effects in a ship is vital for the design of the vessel. This paper addresses an experimental and numerical study of containership responses in severe head seas. Experimental results were obtained using a flexible model of a containership of newer design. The experiments showed that, taking hull flexibility into account, the fourth and sixth harmonic of the vertical bending moments had a maximum value of between 25% and 50% of the first harmonic. We also demonstrated that hull flexibility can increase the vertical bending moment by up to 35% in sea states relevant for design. Comparisons of moments found experimentally with results from a nonlinear hydroelastic strip theory method showed that the effect of nonlinearities on the rigid body moments was slightly over-predicted in the aft body. The method also tends to over-predict the increase of the bending moments due to hull flexibility. In general however, the numerical results compared reasonably well with the experimental ones.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,